Aggregation with non-preemptive priority

William Mangoua Sofack

Supervisors: Marc Boyer – Frédéric Boniol

DTIM/SER

November 23, 2011
1 Introduction
 - Network Calculus
 - Context
 - Problematic

2 Contribution
 - Reduce the over approximation: intuition
 - Theorem
 - Examples
 - Example 1
 - Results
 - Example 2
 - New service curve

3 Conclusion and perspectives
 - Conclusion and Perspectives
Embedded Network

- Communicating avionic system
- Real-time applications
- Guarantee a correct behavior of real-time applications
- End-to-end delay bound
Methods

- Model checking
- Scheduling analysis (pathway)
- Real time calculus and Network calculus
Network Calculus

- Forma framework
- Model network elements by their impact on flows
- Constrain arrival and service curves
- Analyse performance, virtual delays, throughput
- Pessimistic existing results
- \(\Rightarrow \) Reduce the pessimism
Aggregation with non-preemptive priority

- A server with a strict service curve β for two flows R_H and R_L
- R_H is α_H upper-constrained
- R_H has higher non-preemptive priority than R_L
- R_L has fixed packet size l_L
Previous works have been done on the strict priority policy
The effect of the non-preemption seems to be not well taken into account
 - When a non-preemptive flow is served, it benefits of the full speed of the server
 - The restriction imposed by the arrival curve of the high-priority flow with the consequence of limitation of its backlogged period
A server with a strict service curve β for two flows R_H and R_L

- R_H is α_H upper-constrained
- R_H has higher non-preemptive priority than R_L
- R_L has fixed packet size l_L
- Service curve $\beta - \alpha_H - l_L$ for R_L
- **Self competitive term** $-l_L$
Reduce the over approximation: Intuition

\[\beta - \alpha_H - l_L \]
Illustration of β_2^{np}
\[\beta_{2}^{np}(t) = \min \{ i \times l_2, \]
\[\quad \beta(s - t) - \beta(\chi'_i) + (i - 1)l_2, \]
\[\quad \beta(s - t) - \beta(\chi''_i + \psi_2) + i \times l_2 \} \]

\[
\begin{align*}
\chi'_i &= \inf \{ t \mid \beta(t) - \alpha_1(t) - l_3 > (i - 1)l_2 \} \\
\chi''_i &= \inf \{ t \mid \beta(t + \psi_2) - \alpha_1(t + \psi_2) > i \times l_2 \} \\
\chi_i &= \max \{ \chi'_i, \chi''_i \}.
\end{align*}
\]

\[\psi_2 = \inf \{ t \mid \beta(t) \geq l_2 \} \]
Reduce the over approximation: intuition

Theorem

Examples

New service curve

1. Aggregation with non-preemptive priority – DTIM/SER

<table>
<thead>
<tr>
<th>Service</th>
<th>P_1^B</th>
<th>P_1^A</th>
<th>P_2^B</th>
<th>P_2^A</th>
</tr>
</thead>
</table>

A–backlog

B–backlog

0 1 2 3 4 5 6 7
StSc(t): Start of service; **StBl:** Start of backlog

\[
\begin{align*}
\text{StBl}_2(t) & \quad t \quad \text{StSc}_2(t) \\
\text{StBl}_1(t) & \quad \text{StBl}_2(t) \quad t \quad \text{StSc}_2(t)
\end{align*}
\]

(a) \(R_3 \quad R_2 \) \(\leq \psi_3 \)

(c) \(R_1 \quad R_2 \) \(\leq \psi_1 \)
StSc(t): Start of service; StBl: Start of backlog

\[StBl_2(t) \quad \downarrow \quad StBl_1(t) \quad t \quad StSc_1(t) \quad StSc_2(t) \]

\[d) \quad \begin{array}{ccc}
R_3 & R_1 & R_2 \\
\leq \psi_3
\end{array} \]

\[StBl_1(t) \quad \downarrow \quad StSc_1(t) \quad StBl_2(t) \quad StSc_2(t) \]

\[e) \quad \begin{array}{ccc}
R_2 & R_1 & R_2 \\
\leq \psi_2 & \uparrow t
\end{array} \]
A server with a strict service curve β for two flows R_H and R_L

- R_H is α_H upper-constrained
- R_L is α_L upper-constrained and has fixed-size packets l
- R_H has higher non-preemptive priority than R_L

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta(t)$</td>
<td>$3t-9$</td>
</tr>
<tr>
<td>$\alpha_H(t)$</td>
<td>$\begin{cases} t+2 & \text{if } t \geq 0 \ 0 & \text{else} \end{cases}$</td>
</tr>
<tr>
<td>l</td>
<td>3</td>
</tr>
<tr>
<td>$\alpha_L(t)$</td>
<td>$\lceil 3t \rceil$</td>
</tr>
</tbody>
</table>
Results

Table: Delays with the new result

<table>
<thead>
<tr>
<th>Virtual delay (ms)</th>
<th>R_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>10.5</td>
</tr>
<tr>
<td>[WM11]</td>
<td>7.5</td>
</tr>
</tbody>
</table>

![Graph showing comparisons between Ours and Existing with key points α, β, α_H, and α_L at times t=3, t=6.5, t=8, and t=10.5 with corresponding virtual delays.]
[WM11] IS NOT TIGHT

<table>
<thead>
<tr>
<th></th>
<th>Period</th>
<th>Size (l_i)</th>
<th>(\alpha_i)</th>
<th>Exact worst delay</th>
<th>Delay [WM11]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>2.5</td>
<td>2.5</td>
<td>(2.5 \left\lceil \frac{2t}{5} \right\rceil)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(R_2)</td>
<td>3.5</td>
<td>2.5</td>
<td>(2.5 \left\lceil \frac{2t}{7} \right\rceil)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(R_3)</td>
<td>3.5</td>
<td>2.5</td>
<td>(2.5 \left\lceil \frac{2t}{7} \right\rceil)</td>
<td>3.5</td>
<td>6</td>
</tr>
</tbody>
</table>

Table: Example CAN \(\beta(t) = 2.5t \)
\(\beta_{2S}^{np}(t) = \min \{i \times l_2, \)
\[\beta(t) - \beta(\chi'_{i}) + (i - 1) \times l_2, \]
\[\beta(t) + \beta(\Delta + \psi_2) - \beta(\chi''_{i} + \psi_2) + (i - 1) \times l_2 \} \quad (1) \]

with \(i \) such that \(\chi(t) = \chi_i \) and \(\Delta = \alpha_{2}^{-1}(2 \times l_2) - \psi_2 \)

\[
\begin{align*}
\chi'_{i} & = \inf \{t | \beta(t) - \alpha_1(t) - l_3 > (i - 1)l_2\} \\
\chi''_{i} & = \inf \{t | \beta(t + \psi_2) - \alpha_1(t + \psi_2) > i \times l_2\}
\end{align*}
\]

\(\chi_i = \max \{\chi'_i, \chi''_i\} \).

\(\psi_2 = \inf \{t | \beta(t) \geq l_2\} \)
<table>
<thead>
<tr>
<th></th>
<th>Period</th>
<th>Size ((l_i))</th>
<th>(\alpha_i)</th>
<th>Exact worst delay</th>
<th>Delay [WM11]</th>
<th>New delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>2.5</td>
<td>2.5</td>
<td>(2.5\left\lceil \frac{2t}{5} \right\rceil)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(R_2)</td>
<td>3.5</td>
<td>2.5</td>
<td>(2.5\left\lceil \frac{2t}{7} \right\rceil)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(R_3)</td>
<td>3.5</td>
<td>2.5</td>
<td>(2.5\left\lceil \frac{2t}{7} \right\rceil)</td>
<td>3.5</td>
<td>6</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table: Example CAN \(\beta(t) = 2.5t\)
CONCLUSION

- Service guaranteed to the lower priority flows in a context of aggregation with non-preemptive priority within network calculus
- vs. other NC-based approaches
 - more general
 - always better
- vs. scheduling based:
 - more general
 - always the same result?
- Future works
 - exploit the fact that the result is more general (energy-aware processing, WFQ)
 - Is this result tight?
François Baccelli, Guy Cohen, Olsder Geert Jan, and Jean-Pierre Quadrat.

Marc Boyer, Laurent Jouhet, and Anne Bouillard.
Notations pour le calcul réseau.

Anne Bouillard, Laurent Jouhet, and Eric Thierry.
Service curves in network calculus: dos and don’ts.
Rapport de recherche INRIA 7094, INRIA, Novembre 2009.

Jean-Yves Le Boudec and Patrick Thiran.
Network Calculus, volume 2050.

Anne Bouillard and Eric Thierry.
An algorithmic toolbox for network calculus.

Devesh B. Chokshi and Purandar Bhaduri.
Modeling fixed priority non-preemptive scheduling with real-time calculus.

Rene L. Cruz.
A calculus for network delay, part I: Network elements in isolation.

Rene L. Cruz.
A calculus for network delay, part II: Network analysis.

Rene L. Cruz.
A calculus for network delay, part I: Network elements in isolation.

Rene L. Cruz.
A calculus for network delay, part II: Network analysis.

Chang Cheng-Shang.
Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien.
Controller area network (CAN) schedulability analysis: Refuted, revisited and revised, 2007.

Jérôme Grieu.
Analyse et évaluation de techniques de commutation Ethernet pour l’interconnexion des systèmes avioniques.

W. Haid and L. Thiele.
Complex task activation schemes in system level performance analysis.
In ESWEEK ’07: Proc. of the 5th IEEE/ACM int. conf. on Hardware/Software Codesign and System Synthesis (Salzburg,
Austria, September 30 - October 03, 2007), pages 173–178, New York, NY, USA, 2007. ACM.

M. S. William and B. Marc. Non preemptive static priority with network calculus.
Questions ?