Controller Synthesis with UPPAAL-TIGA

Alexandre David
Kim G. Larsen, Didier Lime,
Franck Cassez, Jean-François Raskin...
Overview

- Timed Games.
 - Algorithm (CONCUR’05).
 - Strategies.
 - Code generation.
 - Architecture of UPPAAL-TIGA.
- Timed Games with Partial Observability.
 - Algorithm (ATVA’07).
Controller Synthesis/TGA

Given
- System moves S,
- Controller moves C,
- and a property φ,

find
- a strategy S_c s.t. $S_c \parallel S \models \varphi$,
- or prove there is no such strategy.
Timed Game Automata

- Introduced by Maler, Pnueli, Sifakis [Maler & al. ’95].
- The controller continuously observes the system (all delays & moves are observable).
- The controller can
 - wait (delay action),
 - take a controllable move, or
 - prevent delay by taking a controllable move.
Timed Game Automata

- Timed automata with controllable and uncontrollable transitions.
- Reachability & safety games.
 - control: $A<> TGA\.goal$
 - control: $A[\] not TGA\.L4$
- Memoryless strategy:
 - state \rightarrow action.
TGA – Let’s Play!

- control: $A<> \text{TGA.goal}$

 - $x<1$: λ
 - $x=1$: c

 - $x<2$: λ
 - $x\geq 2$: c

Strategy

- $x\leq 1$: c

- $x<1$: λ
- $x=1$: c

Note: This is one strategy. There are other solutions.
Results

- [Maler & al. ’95, De Alfaro & al. ’01] There is a **symbolic iterative algorithm** to compute the set W^* of winning states for timed games.

- [Henziger & Kopke ’99] **Safety** and **reachability** control are **EXPTIME-complete**.

Algorithm

- On-the-fly forward algorithm with a backward fix-point computation of the winning/losing sets.
 - Use all the features of UPPAAL in forward.
 - Possible to mix forward & backward exploration.
- Solved by Liu & Smolka 1998 for untimed games.
- Extended symbolic version at CONCUR’05.
Initialization:
\[
\text{Passed} \leftarrow \{S_0\} \quad \text{where} \quad S_0 = \{(\ell_0, \tilde{0})\};
\]
\[
\text{Waiting} \leftarrow \{(S_0, \alpha, S') \mid S' = \text{Post}_\alpha(S_0)\}
\]
\[
\text{Win}[S_0] \leftarrow S_0 \cap (\{\text{Goal}\} \times \mathbb{R}^X_{\geq 0});
\]
\[
\text{Depend}[S_0] \leftarrow \emptyset;
\]

Main:
\\
while \((\text{Waiting} \neq \emptyset) \land (s_0 \not\in \text{Win}[S_0])\) do
\\
e = (S, \alpha, S') \leftarrow \text{pop}(\text{Waiting});
\\
if \(S' \not\in \text{Passed}\) then
\\
\text{Passed} \leftarrow \text{Passed} \cup \{S'\};
\]
\[
\text{Depend}[S'] \leftarrow \{(S, \alpha, S')\};
\]
\[
\text{Win}[S'] \leftarrow S' \cap (\{\text{Goal}\} \times \mathbb{R}^X_{\geq 0});
\]
\[
\text{Waiting} \leftarrow \text{Waiting} \cup \{(S', \alpha, S'') \mid S'' = \text{Post}_\alpha(S')\};
\]
\\
if \(\text{Win}[S'] \neq \emptyset\) then \text{Waiting} \leftarrow \text{Waiting} \cup \{e\};
\\
else (** reevaluate **)\(^a\)
\\
\text{Win}^* \leftarrow \text{Pred}_t(\text{Win}[S] \cup \bigcup_{S \prec T} \text{Pred}_c(\text{Win}[T]),
\]
\[
\bigcup_{S \to T} \text{Pred}_u(\text{T} \setminus \text{Win}[T])) \cap S;
\]
\\
if \((\text{Win}[S] \subset \text{Win}^*)\) then
\\
\text{Waiting} \leftarrow \text{Waiting} \cup \text{Depend}[S]; \text{Win}[S] \leftarrow \text{Win}^*;
\]
\[
\text{Depend}[S'] \leftarrow \text{Depend}[S'] \cup \{e\};
\]
endif
\\
endwhile
\\
18-11-2010
Backward Propagation

L0
L1
L2
L3

Note: This is not a strategy, it’s only the set of winning states.

Back-propagate when goal is reached.

L0
L1
L2
L3
L4

Note: This is not a strategy, it’s only the set of winning states.
Backward Propagation

Predecessors of G avoiding B?

pred_t
\[\text{pred}_t \left(\bigcup_{i} G_i, \bigcup_{j} B_j \right) = \bigcup_{i} \bigcap_{j} \text{pred}_t (G_i, B_j) \]

\[\text{pred}_t (G, B) = (G^\downarrow \setminus B^\downarrow) \bigcup ((G \bigcap B^\downarrow)^{\downarrow} \setminus B)^{\downarrow} \]
Query Language (1)

- Reachability properties:
 - control: $A[p \mathcal{U} q]$
 - control: $A<> q \iff control: A[true \mathcal{U} q]$

- Safety properties:
 - control: $A[p \mathcal{W} q]$
 - control: $A[]p \iff control: A[p \mathcal{W} false]$

- Tuning:
 - change search ordering,
 - add back-propagation of winning+losing states.
Query Language (2)

- **Time-optimality**
 - control_t*(u,g): A[p U q]
 - u is an upper-bound to prune the search, act like an invariant but on the path = expression on the current state.
 - g is the time to the goal from the current state (a lower-bound in fact), also used to prune the search. States with t+g > u are pruned.

- **Cooperative strategies.**
 - E<> control: φ
 - Property satisfied iff φ is reachable but the obtained strategy is maximal.
Cooperative Strategies

- State-space is partitioned between states from which there is a strategy and those from which there is no strategy.
- Cooperative strategy suggests moves from the opponent that would “help” the controller.
- Being used in testing.
Strategies?

- The algorithm computes sets of winning and losing states, *not* strategies.
- Strategies are computed on top:
 - Take actions that lead to winning states (reachability).
 - Take actions to avoid losing states (safety).
 - **Partition** states with actions to guarantee progress.
 - This is done on-the-fly and the obtained strategy depends on the exploration order.
Winning States → Strategy

Also possible

Winning states

Strategy
Strategies as Partitions

- Built on-the-fly.
- Guarantee progress in the strategy.
 - No loop.
- Deterministic strategy.
- Different problem than computing the set of winning states.
- Different ordering searches can give different strategies ... with possibly the same set of winning states.
Code Generation

- Mapping state \rightarrow action.
 - $\#$ entries = $\#$ states.
- Decision graph state \rightarrow action.
 - $\#$ tests = $\#$ variables.
 - More compact.
 - Based on a hybrid BDD/CDD with multi-terminals.
Decision Graph

- BDD: boolean variables.
- CDD: constraints on clocks.
- Multi-terminals: actions.
 - It works because we have a partition.
Graph Reduction

- Testing consecutive bits:
 - Replace by one testing with a mask.
 - Can span on several variables.
Decision Graph
Pipeline Architecture

Pipeline Components

- Source
- Sink
- Buffer
- Filter

Data
- State
- Successor
Pipeline Architecture

Transition → Successor → Delay → Extrapolation +

Source s,F forward.

State-graph

Destination s',B backward.

Predecessor → pred_t → update?

Waiting queue

Inclusion check + add

s',F

s,B

$\text{win}, \text{lose}?$

update?
Query Language (4)

- Partial observable systems:
 - \{ obs1, obs2 ... \} control: reachability | safety
 - Generate a controller based on partial observations of the system (obs1, obs2...).

- Games with Buchi accepting states.
 - control: A[] (p && A<> q)
 - control: A[] A<> q
Query Language(5)

- Simulation checking of TA & TGA.
 - \{ A, B \ldots \} \leq \{ C, D \ldots \}
 - Built-in new algorithm that bypasses a manual encoding we had [LSV tech. report KGL, AD, TC].
 - Strategies & simulation in the GUI available.
 - FORMATS’09
TGA with Buchi Accepting States

- Use TIGA’s algorithm as an intermediate steps in a fixpoint, but modified:
 - winning states are states that can reach goals
 - goal states defined by queries, not necessarily winning
- Fixpoint:
 \[\text{Win} = \text{SOTF}(\text{goal}) \]
 \[\text{while } (\text{Win} \cap \text{goal}) \neq \text{goal} \]
 \[\text{goal} = \text{Win} \cap \text{goal} \]
 \[\text{Win} = \text{SOTF}(\text{goal}) \]
 \[\text{done} \]
 \[\text{return } S_0 \in \text{Win} \]
Application: Non-zeno Strategies

- Add a monitor with the rest of the system.
- Ask control: $A[] (p \land \land A<>\text{Monitor.Check})$

![Diagram](image-url)
Timed Games

with Partial Observability

- Previous: Perfect information.
 - Not always suitable for controllers.

- Partial observation.
 - States or events, here states.
 - Distinguish states w.r.t. observations.
 - Strategy keeps track of states w.r.t. observations.
 - Observations = predicates over states.
Results

- **Discrete event systems**
 - [Kupferman & Vardi ‘99, Reif ‘84, Arnold & al. ‘03]. Game given as modal logic formula: Full-observation as hard as partial observation.
 - [Chatterjee & al. ’06, De Wulf & al. ’06]. Game given as explicit graph: Full-observation \textsc{PTIME}, partial observation \textsc{EXPTIME}.

- **Timed systems, game given as a TA**
 - [Cassez & al. ’07] Efficient on-the-fly algorithm, \textsc{EXPTIME}.
State Based Full Observation

- 2-player reachability game, controllable + uncontrollable actions.
- Full observation: in l_2 do c_1, in l_3 do c_2.
Partition the state-space \(\ell_2 = \ell_3 \).

Can’t win here.
State Based Partial Observation

Winning Strategy:
after: play \(c_1 \)
after: play \(c_1 \)
after: play \(c_2 \)

The controller can observe each state’s change
Observation For Timed Systems

In Continuous Timed Systems, “next state” is reached by:

- either a discrete step
- or a continuous time-step

Possible Observations:
- each 1/2 t.u.: \(\ldots \)
- each 1/4 t.u.: \(\ldots \)
- as it wishes: \(\ldots \)

\(x = 1; c_1 \)

2000 times within 1 t.u.

- the controller cannot observe each state’s change

Issue: When does the controller observe the system?
Stuttering-Free Invariant Observations

Assumption: the controller can only see changes of observations

Stuttering-free observation:

Must play based on stuttering-free observations
TGA with PO: Rules

- If player 1 wants to take an action c, then
 - player 2 can choose to play any of his actions or c as long as the observation stays the same, or
 - player 2 can delay as long as c is not enabled and the observation stays the same.
 - \Rightarrow c is urgent.

- If player 1 wants to delay, then
 - player 2 can delay or take any of his actions as long as the observation stays the same.

- The turn is back to player 1 as soon as the observation changes.
On-the-Fly Algorithm

Initialization:
\[\text{Passed} \leftarrow \{s_0\}; \]
\[\text{Waiting} \leftarrow \{(s_0, \alpha, W') \mid \alpha \in \Sigma_1, \ o \in \mathcal{O}, \ W' = \text{Next}_\alpha(s_0) \cap o \wedge W' \neq \emptyset\}; \]
\[\text{Win}[[s_0]] \leftarrow \{s_0\} \subseteq \gamma(\text{Goal}) \land 1 : 0; \]
\[\text{Losing}[[s_0]] \leftarrow \{s_0\} \subseteq \gamma(\text{Goal}) \land (\text{Waiting} = 0 \lor \forall \alpha \in \Sigma_1, \text{Sink}_\alpha(s_0) \neq \emptyset) \land 1 : 0; \]
\[\text{Depend}[[s_0]] \leftarrow \emptyset; \]

Main:
while \((\text{Waiting} \neq \emptyset) \land \text{Win}[[s_0]] \neq 1 \land \text{Losing}[[s_0]] \neq 1\) do
\[e = (W, \alpha, W') \leftarrow \text{pop} \text{(Waiting)}; \]
if \(s' \notin \text{Passed}\) then
\[\text{Passed} \leftarrow \text{Passed} \cup \{W'\}; \]
\[\text{Depend}[W'] \leftarrow \{(W, \alpha, W')\}; \]
\[\text{Win}[W'] \leftarrow \{W' \subseteq \gamma(\text{Goal}) \land 1 : 0; \}
\[\text{Losing}[W'] \leftarrow \{W' \subseteq \gamma(\text{Goal}) \land \text{Sink}_\alpha(W') \neq \emptyset \land 1 : 0; \}
if \((\text{Losing}[W'] = 1)\) then \((\ast \text{ if losing it is a deadlock state } \ast)\)
\[\text{NewTrans} \leftarrow \{(W', \alpha, W'') \mid \alpha \in \Sigma, \ o \in \mathcal{O}, \ W' = \text{Next}_\alpha(W) \land o \wedge W' \neq \emptyset\}; \]
if \(\text{NewTrans} = \emptyset \land \text{Win}[W'] = 0\) then \(\text{Losing}[W'] = 1; \)
if \((\text{Win}[W'] \lor \text{Losing}[W'])\) then \(\text{Waiting} \leftarrow \text{Waiting} \cup \{e\}; \)
\[\text{Waiting} \leftarrow \text{Waiting} \cup \text{NewTrans}; \]
else \((\ast \text{ reevaluate } \ast)\)
\[\text{Win}^{*} \leftarrow \bigvee_{c \in \text{Enabled}(W)} \bigwedge_{W'' \subseteq W'''} \text{Win}[W''']; \]
if \(\text{Win}^{*}\) then
\[\text{Waiting} \leftarrow \text{Waiting} \cup \text{Depend}[W]; \text{Win}[W] \leftarrow 1; \]
\[\text{Losing}^{*} \leftarrow \bigwedge_{c \in \text{Enabled}(W)} \bigvee_{W'' \subseteq W''' \cap \text{Win}[W'']} \text{Losing}[W'']; \]
if \(\text{Losing}^{*}\) then
\[\text{Waiting} \leftarrow \text{Waiting} \cup \text{Depend}[W]; \text{Losing}[W] \leftarrow 1; \]
if \(\text{Win}[W'] = 0 \land \text{Losing}[W'] = 0\) then \(\text{Depend}[W'] \leftarrow \text{Depend}[W'] \cup \{e\}; \)
endwhile
Algorithm

Partition the state-space w.r.t. observations. Observations O1 O2 O3. Winning/losing is observable.

\[\lnot O_1 \land \lnot O_2 \land O_3 \]
\[\lnot O_1 \land O_2 \land \lnot O_3 \]
\[O_1 \land O_2 \land \lnot O_3 \]
\[O_1 \land \lnot O_2 \land O_3 \]
\[\lnot O_1 \land O_2 \land O_3 \]

change of observation
Algorithm with Reachability Objective

Initialization:
- \(\text{Passed} \leftarrow \{s_0\} \);
- \(\text{Waiting} \leftarrow \{\{s_0\}, \alpha, W'\} \mid \alpha \in \Sigma_1, \alpha \in \mathcal{O}, \ W' = \text{Next}_\alpha(\{s_0\}) \cap \alpha \wedge W' \neq \emptyset \};
- \(\text{Win}[\{s_0\}] \leftarrow (\{s_0\} \subseteq \gamma(\text{Goal}) \wedge 1 : 0) \);
- \(\text{Losing}[\{s_0\}] \leftarrow (\{s_0\} \not\subseteq \gamma(\text{Goal}) \wedge (\text{Waiting} = 0 \vee \forall \alpha \in \Sigma_1, \text{Sink}_\alpha(s_0) \neq \emptyset) \wedge 1 : 0) \);
- \(\text{Depend}[\{s_0\}] \leftarrow \emptyset \);

Main:
while \((\text{Waiting} \neq \emptyset) \wedge \text{Win}[\{s_0\}] \neq 1 \wedge \text{Losing}[\{s_0\}] \neq 1)\) do
- \(e = (W, \alpha, W') \leftarrow \text{pop}(\text{Waiting}); \)
- if \(W' \notin \text{Passed} \) then
 - \(\text{Passed} \leftarrow \text{Passed} \cup \{W'\} \);
 - \(\text{Depend}[W'] \leftarrow \{(W, \alpha, W')\} \);
 - \(\text{Win}[W'] \leftarrow (W' \subseteq \gamma(\text{Goal}) \wedge 1 : 0) \);
 - \(\text{Losing}[W'] \leftarrow (W' \not\subseteq \gamma(\text{Goal}) \wedge \text{Sink}_\alpha(W') \neq \emptyset) \wedge 1 : 0) \);
 - if \((\text{Losing}[W'] \neq 1) \) then (*) if losing it is a deadlock state *)
 - \(\text{NewTrans} \leftarrow \{(W', \alpha, W'') \mid \alpha \in \Sigma, \alpha \in \mathcal{O}, W' = \text{Next}_\alpha(W) \cap \alpha \wedge W' \neq \emptyset \}; \)
 - if \(\text{NewTrans} = \emptyset \wedge \text{Win}[W'] = 0 \) then \(\text{Losing}[W'] \leftarrow 1 \);
 - if \((\text{Win}[W'] \vee \text{Losing}[W']) \) then \(\text{Waiting} \leftarrow \text{Waiting} \cup \{e\} \);
 - \(\text{Waiting} \leftarrow \text{Waiting} \cup \text{NewTrans} \);
else (* reevaluate *)
 - \(\text{Win}^* \leftarrow \bigvee_{c \in \text{Enabled}(W)} (W, \alpha \wedge W'') \wedge \text{Win}[W''] \);
 - if \(\text{Win}^* \) then
 - \(\text{Waiting} \leftarrow \text{Waiting} \cup \text{Depend}[W]; \text{Win}[W] \leftarrow 1 \);
 - \(\text{Losing}^* \leftarrow \bigwedge_{c \in \text{Enabled}(W)} (W, \alpha \wedge W'') \vee \text{Losing}[W''] \);
 - if \(\text{Losing}^* \) then
 - \(\text{Waiting} \leftarrow \text{Waiting} \cup \text{Depend}[W]; \text{Losing}[W] \leftarrow 1 \);
 - if \((\text{Win}[W'] = 0 \wedge \text{Losing}[W'] = 0) \) then \(\text{Depend}[W'] \leftarrow \text{Depend}[W'] \cup \{e\} \);
endif
endwhile
Initialization

Passed ← \{\{s_0\}\};
Waiting ← \\{((s_0), \alpha, W') \mid \alpha \in \Sigma_1, \sigma \in \mathcal{O}, \ W' = \text{Next}_\alpha(\{s_0\}) \cap \sigma \land W' \neq \emptyset\};
Win[\{s_0\}] ← (\{s_0\} \subseteq \gamma(\text{Goal}) ? 1 : 0);
Losing[\{s_0\}] ← (\{s_0\} \not\subseteq \gamma(\text{Goal}) \land (\text{Waiting} = \emptyset \lor \forall \alpha \in \Sigma_1, \text{Sink}_\alpha(s_0) \neq \emptyset) ? 1 : 0);
Depend[\{s_0\}] ← \emptyset;

- Passed list \{ sets of W \}.
- Waiting list \{ tuples (W,\alpha,W') \}.
- Win[W] maps to 1 (winning) or 0 (unknown).
- Similar Losing[W].
- Depend[W] records the graph.
- Sink_\alpha: sink states by doing \alpha.
Sets of Symbolic States & Successors

Next_\alpha(W): sets of symbolic successors for some action \alpha.

Set W of symbolic states within one observation.

Next_\alpha(W) \cap O_2

Next_\alpha(W) \cap O_3

Next_\alpha: do \{\alpha asap and wait for \alpha\} until change of observation.
Forward Phase

\[
\begin{align*}
\text{Passed} &\leftarrow \text{Passed} \cup \{W'\}; \\
\text{Depend}[W'] &\leftarrow \{(W, \alpha, W')\}; \\
\text{Win}[W'] &\leftarrow (W' \subseteq \gamma(\text{Goal}) ? 1 : 0); \\
\text{Losing}[W'] &\leftarrow (W' \not\subseteq \gamma(\text{Goal}) \land \text{Sink}_\alpha(W') \neq \emptyset ? 1 : 0); \\
\text{if } (\text{Losing}[W'] \neq 1) \text{ then } (* \text{ if losing it is a deadlock state } *) \\
\text{NewTrans} &\leftarrow \{(W', \alpha, W'') \mid \alpha \in \Sigma, o \in \mathcal{O}, W' = \text{Next}_\alpha(W) \cap o \land W'' \neq \emptyset\}; \\
\text{if } \text{NewTrans} = \emptyset \land \text{Win}[W'] = 0 \text{ then } \text{Losing}[W'] \leftarrow 1; \\
\text{if } (\text{Win}[W'] \lor \text{Losing}[W']) \text{ then } \text{Waiting} &\leftarrow \text{Waiting} \cup \{e\}; \\
\text{Waiting} &\leftarrow \text{Waiting} \cup \text{NewTrans}; \\
\end{align*}
\]

Update Win, Losing, graph.

Continue forward.

Back-propagate if necessary.

Detect deadlocks.

Partition successors.
Backward Phase

If there is a c whose successors are all winning

$$Win^* \leftarrow \bigvee_{c \in \text{Enabled}(W)} \bigwedge_{W \xrightarrow{c} W''} Win[W''];$$

if Win^* then

$$Waiting \leftarrow Waiting \cup \text{Depend}[W]; Win[W] \leftarrow 1;$$

then W is winning and back-propagate.

If every c has a losing successor

$$Losing^* \leftarrow \bigwedge_{c \in \text{Enabled}(W)} \bigvee_{W \xrightarrow{c} W''} Losing[W''];$$

if $Losing^*$ then

$$Waiting \leftarrow Waiting \cup \text{Depend}[W]; Losing[W] \leftarrow 1;$$

then W is losing and back-propagate.

Update graph in case of new paths to passed states.

$$\text{if } (Win[W'] = 0 \land Losing[W'] = 0) \text{ then } \text{Depend}[W'] \leftarrow \text{Depend}[W'] \cup \{e\};$$
Algorithm

Initial state in some partition.
Compute successors \{ set of states \} w.r.t. a controllable action.
Successors distinguished by observations.
Algorithm

Construct the graph of sets of symbolic states. Back-propagate winning/losing states.
Notes

- Stuttering-free invariant observations
 - sinks possible in observations (deadlock/livelock/loop)
- Actions are urgent
 - delay until actions are enabled (or observation changes)
Algorithm

- Forward exploration
 - constrained by action + observations
 - delay special
- Back-propagation.
 - If all successors\(^a\) are winning, declare current state winning, strategy: take action \(a\).
 - If one successor\(^a\) is losing, avoid action \(a\).
 - If no action is winning the current state is losing.
Example

Observations: L, H, E, B, y in [0,1[
Example – Memoryful Strategy

Partition:
- \(y \), \(Ly \), \(Hy \), \(Ey \)

Actions:
- Delay
- \(y = 0 \)
- Eject!

Controllable with \(y \in [0, \frac{1}{2}] \),
not with \(y \in [0,1] \).
Case-Studies

Automatic Controller Synthesis

Getting from models to production code

Case study:
Climate controller for livestock production
Real-Life Pig Stable in Northern Jutland
The Scenario

Uppaal TIGA model + query

Strategy

Parser

S-function

Controller

C-code

MATLAB/Simulink + Real Time Workshop
Step 1: Generating a Strategy

- Uppaal TIGA model + query
- Strategy
- Parser
- S-function
- Controller
- C-code
- MATLAB/Simulink + Real Time Workshop
Step 1: Generating the Strategy

Uppaal TIGA models and Control Query

Control Query:

control : A[] ZC.Decided imply forall (c0 : choice_t)\nforall (c1 : choice_t)\nforall (in : intbool_t)\nforall (out : intbool_t)\nforall (heat : intbool_t) (flow_balance(c0,c1,in,out) imply\nobj_func >= compute_objective_function(c0,c1,in,out,heat))
Step 1: Generating the Strategy

Uppaal TIGA models and Control Query

Control Query:

control : A[] ZC.Decided imply forall (c0 : choice_t) \forall (c1 : choice_t) \forall (in : intbool_t) \forall (out : intbool_t) \forall (heat : intbool_t) (flow_balance(c0,c1,in,out) imply obj_func >= compute_objective_function(c0,c1,in,out,heat))

Strategy to avoid losing:

State: (Neighbor(0)._id0 Neighbor(1)._id0 ZC.Decide StateChanger._id4) n[0]=2 n[1]=2 temp[0]=1 temp[1]=0 humid[0]=1 humid[1]=0 objective=1 hottest=0
morehumid=0 decrease_humidity=0 c[0]=0 c[1]=0 inlet=0 heater=0 outlet=0 obj_f
unc=0

When you are in true, take transition ZC.Decide->ZC.Decided { flow_balance(1, 0, 0, 1), tau, c[0] = 1, c[1] = 0, heater := 1, inlet := 1, obj_func := compute_objective_function(1, 0, 0, 1) }

State: (Neighbor(0)._id0 Neighbor(1)._id0 ZC.Init StateChanger._id4) n[0]=1 n[1]=1 temp[0]=1 humid[0]=0 humid[1]=0 objective=0 hottest=1 morehumid=1 decrease_humidity=1 c[0]=0 c[1]=0 inlet=0 heater=0 outlet=0 obj_f

c=0

...
Step 2: From Strategy to S-function

- **Uppaal TIGA model + query**

- **Strategy** → **Parser** → **S-function**

- **Controller**

- **C-code**

- **MATLAB/Simulink + Real Time Workshop**
Step 2: From Strategy to S-function

Uppaal TIGA Strategy

Ruby Script

Simulink S-function

{
 INLET = OFF;
 OUTLET = ON;
 HEATER = ON;
 GiveLeft = 0;
 GetLeft = 1;
 GiveRight = 0;
 GetRight = 0;
}
{
 INLET = ON;
 OUTLET = ON;
 HEATER = OFF;
}
...
Step 3: From S-function to Production Code

- Uppaal TIGA model + query
- Controller
- Strategy
- Parser
- S-function
- C-code
- MATLAB/Simulink + Real Time Workshop
Step 3: From S-function to Production Code

Actual dynamics modelled in Simulink

Validation through simulations

Embedded S-function
Step 3: From S-function to Production Code

Actual dynamics modelled in Simulink

Production Code

dstatic void gamecontrol2_output(int T tid)
{
 SimStruct *rts = gamecontrol2_M->childSfunctions[4];
 sfcnOutputs(rts, 0);
}
SimStruct *rts = gamecontrol2_M->childSfunctions[5];
 sfcnOutputs(rts, 0);
}
SimStruct *rts = gamecontrol2_M->childSfunctions[6];
 sfcnOutputs(rts, 0);
}

int32_T i1;
for(i1 = 0; i1 < 18; i1++) {
 gamecontrol2_B.Sum[i1] =
 gamecontrol2_B.SFunction1[i1] -
 gamecontrol2_P.Constant_Value;
 gamecontrol2_B.Gain[i1] =
 gamecontrol2_B.Sum[i1] *
 gamecontrol2_P.Gain_Gain;
}

....
Step 4: Executing the Production Code

- Uppaal TIGA model + query
- Strategy
- Parser
- S-function
- Controller
- C-code
- MATLAB/Simulink + Real Time Workshop
Generalizing this Work

- The case-study
 - ad-hoc translation
 - ad-hoc script
 - ad-hoc interface

- What we did:
 - Defined the interface (inputs & outputs in Simulink).
 - Rewrote the Ruby translator
 - generic inputs/outputs
 - generic strategies
 - discretizes time.
 - Integrated the workflow inside Simulink.
Workflow Between TIGA & Simulink
Results

- From a TIGA model and a Simulink model we can
 - generate the S-function that acts as the discrete controller inside Simulink,
 - simulate the model and validate the controller.