Unfoldings of Networks of Timed Automata

Franck Cassez Thomas Chatain Claude Jard
Patricia Bouyer Serge Haddad Pierre-Alain Reynier

Rennes, December 3, 2008
Unfoldings [McMillan ’93]

- First defined for Petri nets
- Then extended to other true concurrency models [Esparza, Römer ’99]
- Compact representation of the executions
- Explicit representation of concurrency
- Avoid computation of interleavings
- Model-checking, diagnosis, asynchronous circuits
- Optimization: adequate orders [Esparza, Römer, Vogler ’02]
Timed Automata [Alur, Dill ’94]

- \(\langle L, l_0, \Sigma, X, T, \text{Inv} \rangle \)

- Transitions \(t \overset{\text{def}}{=} \langle l, g, a, R, l' \rangle \), with
 - source: \(l \overset{\text{def}}{=} \alpha(t) \in L \)
 - target: \(l' \overset{\text{def}}{=} \beta(t) \in L \)
 - guard: \(g \overset{\text{def}}{=} \gamma(t) \)
 - label: \(a \overset{\text{def}}{=} \lambda(t) \in \Sigma \)
 - resetted clocks: \(R \overset{\text{def}}{=} \rho(t) \subseteq X \)

```
 l_1
 ◯--------------
 |              |
 |              |
 v              v
 l_2
 ◯--------------
 |              |
 |              |
 v              v
  x \geq 3       x := 0
```

```
 l_1
 ◯--------------
 |              |
 |              |
 v              v
  x \leq 1       d
```

```
 l_2
 ◯--------------
 |              |
 |              |
 v              v
  b
```

Timed Automata: Semantics

State $\langle l, dor, \theta \rangle$

- location: $l \in L$
- current date: $\theta \in \mathbb{R}$
- date of latest reset for every clock: $\forall x \in X \quad dor(x) \leq \theta$

The transition t can occur at date $\theta' \geq \theta$ from state $\langle l, dor, \theta \rangle$, if:

- the invariant of l is satisfied until date θ':
 $\theta' - dor \models Inv(l)$
- $l = \alpha(t)$
- the guard of t is satisfied at date θ': $\theta' - dor \models \gamma(t)$
Example of Timed Automaton

date: $\theta = 0$

dor$(x) = 0$

$l_1 \quad x \leq 1$

$l_2 \quad x := 0$

$b \quad x \geq 3$
Example of Timed Automaton

\[l_1 x \leq 1 \]

\[l_2 \]

\[a \]

\[d \]

\[x := 0 \]

\[b \]

\[x \geq 3 \]

\((a, 0.7) \)

date: \(\theta = 0.7 \)

dor(\(x \)) = 0
Example of Timed Automaton

\[
\begin{align*}
&l_1 & & x \leq 1 \\
&\text{a} & & d \\
&l_2 & & x := 0 \\
&\text{b} & & x \geq 3
\end{align*}
\]

\[
\text{date: } \theta = 3 \\
\text{dor}(x) = 0
\]

(a, 0.7), (b, 3)
Example of Timed Automaton

\[\text{date: } \theta = 3.5 \]
\[\text{dor}(x) = 0 \]

\[(a, 0.7), (b, 3), (b, 3.5)\]
Example of Timed Automaton

\[(a, 0.7), (b, 3), (b, 3.5), (d, 4)\]

date: \(\theta = 4\)

dor(\(x\)) = 4
Example of Timed Automaton

\[\text{date: } \theta = 5 \]
\[\text{dor}(x) = 4 \]

\[
\begin{align*}
\text{l}_1 & \quad x \leq 1 \\
\text{l}_2 & \quad x \geq 3 \\
\end{align*}
\]

\[
\text{\textcolor{blue}{(a, 0.7), (b, 3), (b, 3.5), (d, 4), (a, 5)}}
\]
Networks of Timed Automata

- synchronization by shared labels
- local clocks

\[
\begin{align*}
\theta &= 0 \\
dor(x) &= 0 \\
dor(y) &= 0 \\

l_1 \quad &x \leq 1 \\
& a \\
& d \\
& x := 0 \\
l_2 \quad & x \geq 3 \\
& b \\

l_3 \quad & y \leq 2 \\
& c \\
& y := 0 \\
l_4 \quad & y := 0 \\
& d
\end{align*}
\]
Networks of Timed Automata

- synchronization by shared labels
- local clocks

\[l_1 \quad x \leq 1 \]
\[l_2 \quad x := 0 \]
\[l_3 \quad y := 0 \]
\[l_4 \quad y \leq 2 \]

(a, 0.7)

\[\theta = 0.7 \]
\[dor(x) = 0 \]
\[dor(y) = 0 \]
Networks of Timed Automata

- synchronization by shared labels
- local clocks

\[
\begin{align*}
\theta &= 3 \\
dor(x) &= 0 \\
dor(y) &= 0
\end{align*}
\]

\[
\begin{align*}
&l_1: x \leq 1 \\
&a: x := 0 \\
&\downarrow d \\
&l_2: x \geq 3 \\
&\downarrow b \\
&\downarrow \text{transition}
\end{align*}
\]

\[
\begin{align*}
l_3: & \\
&\downarrow c \\
&y := 0 \\
&\downarrow d \\
l_4: & y \leq 2 \\
&\downarrow y := 0
\end{align*}
\]

\[(a, 0.7), (b, 3)\]
Networks of Timed Automata

- synchronization by shared labels
- local clocks

\(l_1 \): \(x \leq 1 \)
\(l_2 \): \(x \geq 3 \)
\(l_3 \): \(y \leq 2 \)
\(l_4 \): \(y := 0 \)

Date: \(\theta = 4 \)
\(dor(x) = 0 \)
\(dor(y) = 4 \)

\((a, 0.7), (b, 3), (c, 4) \)
Networks of Timed Automata

- synchronization by shared labels
- local clocks

\(l_1 \)
\(x \leq 1 \)
\(l_2 \)
\(x \geq 3 \)
\(l_3 \)
\(y \leq 2 \)
\(l_4 \)
\(y \geq 0 \)

(a, 0.7), (b, 3), (c, 4), (d, 4)

date: \(\theta = 4 \)
dor(x) = 4
dor(y) = 4
Networks of Timed Automata

- synchronization by shared labels
- local clocks

\(l_1 \)
\(x \leq 1 \)
\(a \)
\(x := 0 \)
\(l_2 \)
\(x \geq 3 \)
\(b \)

\(l_3 \)
\(dor(x) = 4 \)
\(dor(y) = 4 \)
\(l_4 \)
\(y := 0 \)
\(y \leq 2 \)
\(d \)
\(y := 0 \)

\((a, 0.7), (b, 3), (c, 4), (d, 4), (a, 5) \)
Networks of Timed Automata

- synchronization by shared labels
- local clocks

\[
\begin{align*}
\theta &= 6 \\
dor(x) &= 6 \\
dor(y) &= 6
\end{align*}
\]

\[
\begin{align*}
l_1 &\quad x \leq 1 \\
l_2 &\quad x := 0 \\
l_3 &\quad y := 0 \\
l_4 &\quad y \leq 2
\end{align*}
\]

\[
\begin{align*}
(a, 0.7), (b, 3), (c, 4), (d, 4), (a, 5), (d, 6)
\end{align*}
\]
Networks of Timed Automata

- synchronization by shared labels
- local clocks

\[\theta = 7 \]
\[\text{dor}(x) = 6 \]
\[\text{dor}(y) = 6 \]

\[x \leq 1 \]
\[x := 0 \]
\[x \geq 3 \]

\[y \leq 2 \]
\[y := 0 \]

\[(a, 0.7), (b, 3), (c, 4), (d, 4), (a, 5), (d, 6), (a, 7) \]
Processes of Networks of *Untimed* Automata

![Diagram of Processes](image)
Processes of Networks of *Untimed* Automata

\[l_1 \rightarrow a \rightarrow l_2 \rightarrow b \rightarrow l_1 \]
\[l_3 \rightarrow c \rightarrow l_4 \rightarrow d \rightarrow l_3 \]
\[l_1 \rightarrow a \downarrow \]
\[l_2 \rightarrow a \rightarrow l_1 \]
\[l_3 \rightarrow a \rightarrow l_2 \]

\(a \)
Processes of Networks of *Untimed* Automata

\[l_1 \rightarrow a \rightarrow d \rightarrow l_2 \rightarrow b \]

\[l_3 \rightarrow c \rightarrow l_4 \rightarrow d \]

\[l_1 \rightarrow a \rightarrow l_2 \]

\[l_3 \rightarrow c \rightarrow l_4 \]
Processes of Networks of *Untimed* Automata

\[\text{Diagram of processes} \]

\[a, c, d \]
Processes of Networks of *Untimed* Automata

\[a, c, d, a \]
Processes of Networks of *Untimed* Automata
Unfoldings of Networks of *Untimed* Automata
Processes of NTA

\((a, 0.7), (c, 4), (d, 4), (a, 5)\)

\[l_1 \quad x \leq 1\]
\[l_2 \quad a \quad d \quad x := 0\]
\[l_2 \quad b \quad x \geq 3\]

\[l_3 \quad c \quad y := 0\]
\[l_4 \quad d \quad y := 0\]
\[l_4 \quad y \leq 2\]
Processes of NTA

\[(a, 0.7), (c, 4), (d, 4), (a, 5)\]

Other dates are possible with the same structure
Symbolic Processes of NTA

\((a, \theta_1), (c, \theta_2), (d, \theta_3), (a, \theta_4)\)

Other dates are possible with the same structure → parameters
Symbolic Processes of NTA: Symbolic constraints

- induced by
 - guards
 - invariants
 - causality
- convex union of zones [Ben Salah, Bozga, Maler, '06]
- analog of [Aura, Lilius, '00] for NTA

\[
\begin{align*}
\theta_1 & \leq 1 \\
\theta_3 - \theta_2 & \leq 2 \\
\theta_4 - \theta_3 & \leq 1 \\
\theta_1 & \leq \theta_3 \\
\theta_2 & \leq \theta_3 \\
\theta_3 & \leq \theta_4 \\
\theta_4 - \theta_3 & \leq 2
\end{align*}
\]
Difficulties with Time in Unfoldings

- In untimed nets, feasibility of an event is a local property.
- In NTA, it depends on the context.
- In simple case (no invariants), it is still a local property.
How to simulate a NTA without using clocks, but with as much concurrency as possible?

- Look for local conditions to play a transition.
- Executions must respect the usual semantics.
- Notion of partial state L: for each automaton, either $\langle l_i, dor_i, \theta_i \rangle$ or \bullet.

\[
\begin{align*}
 dor(x) &= \ ? \\
 dor(y) &= 0 \\
 l_1 \xrightarrow{a} l_2 & \quad x \leq 1 \\
 l_2 \xrightarrow{b} l_3 & \quad b \\
 l_2 \xrightarrow{d} l_4 & \quad x := 0 \\
 l_3 \xrightarrow{c} l_4 & \quad c \\
 l_4 \xrightarrow{d} l_3 & \quad y := 0 \\
 l_4 \xrightarrow{\bullet} l_4 & \quad y \leq 2 \\
 l_4 \xrightarrow{\bullet} l_4 & \quad y := 0 \\
\end{align*}
\]
Concurrent Operational Semantics for NTA

How to simulate a NTA without using clocks, but with as much concurrency as possible?

- Look for local conditions to play a transition.
- Executions must respect the usual semantics.
- Notion of partial state L: for each automaton, either $\langle l_i, dor_i, \theta_i \rangle$ or \bullet.

\[
dor(x) = 0 \quad \text{dor}(y) = ?
\]

\[
l_1 \xrightarrow{a} x \leq 1 \quad l_3 \xrightarrow{c} y \leq 2
\]

\[
l_2 \xrightarrow{d} x := 0
\]

\[
x \geq 3
\]

\[
l_4 \xrightarrow{d} y := 0
\]
Concurrent Operational Semantics for NTA

How to simulate a NTA without using clocks, but with as much concurrency as possible?

- Look for local conditions to play a transition.
- Executions must respect the usual semantics.
- Notion of partial state L: for each automaton, either $\langle l_i, dor_i, \theta_i \rangle$ or \cdot.

\[
\begin{align*}
 dor(x) &= 0 \\
 x &\leq 1 \\
 x &:= 0 \\
 b &\rightarrow x \geq 3 \\
 l_1 &\xrightarrow{a} l_2 \\
 l_2 &\xrightarrow{d} l_1 \\
 l_2 &\xrightarrow{c} l_3 \\
 l_3 &\xrightarrow{b} l_2 \\
 l_4 &\xrightarrow{d} l_4 \\
 y &\leq 2 \\
 y &:= 0
\end{align*}
\]
Concurrent Operational Semantics for NTA

How to simulate a NTA without using clocks, but with as much concurrency as possible?

- Look for local conditions to play a transition.
- Executions must respect the usual semantics.
- Notion of partial state L: for each automaton, either $\langle l_i, dor_i, \theta_i \rangle$ or \bullet.

\[
\begin{align*}
dor(x) &= 0 \\
l_1 &\xrightarrow{a} l_2, x \leq 1 \\
l_2 &\xrightarrow{b} l_1, x \geq 3 \\
l_3 &\xrightarrow{c} l_4, y \leq 2 \\
l_4 &\xrightarrow{d} l_3, y := 0
\end{align*}
\]
To take t at θ from L, we want:

for all context S of L, t can occur at θ from $L \cup S$.

We have:

t can occur at θ from $L \cup S$

if

\{ the automata concerned by t agree
\}

no invariant in $L \cup S$ expires before θ
Local Conditions to Take Transitions

To take \(t \) at \(\theta \) from \(L \), we want:

for all context \(S \) of \(L \), \(t \) can occur at \(\theta \) from \(L \cup S \).

We have:

\(t \) can occur at \(\theta \) from \(L \cup S \)

if

\[
\begin{cases}
\text{the automata concerned by } t \text{ agree} \\
L \text{ is stable in } S \text{ until } \theta
\end{cases}
\]
Local Stability Condition

Intuition

\[LSC(L, \theta) \implies \]

for all context \(S \) of \(L \), \(L \) is stable in \(S \) until \(\theta \).

Completeness
Global states are stable until the date where one of their invariants expires.
Several choices to define $LSC(L, \theta)$:

- **trivial choice:** L is a global state.
- **BHR:** L involves all the automata that have invariants.
- **more generic:** L contains enough information to check that no automaton of L may be forced to synchronize earlier than θ with another automaton.
A proposition for $LSC(L, \theta)$

Definition: $LSC(L, \theta)$ holds iff

L contains enough information to check that no automaton of L may be forced to synchronize earlier than θ with another automaton:

$$
\begin{align*}
\forall i \in J_L \quad \theta - dor_i \models Inv_i(l_i) \\
\forall t \in \text{Sync} \\
I_t \cap J_L \neq \emptyset & \implies \begin{cases}
I_t \subseteq J_L \\
\forall \exists i \in I_t \cap J_L \quad l_i \neq \alpha_i(t_i) \\
\forall \exists i \in I_t \cap J_L \quad \theta - dor_i \not\models \gamma_i(t_i) \\
\forall \forall i \in I_t \setminus J_L \quad Inv(\alpha_i(t_i)) \equiv \text{true}
\end{cases}
\end{align*}
$$

where

- I_t is the set of automata involved in transition t;
- J_L is the set of automata whose state is defined in the partial state L.
Symbolic Unfoldings of NTA

- In symbolic unfoldings: keep track of all the partial state \(L \) (not only the part that participates in \(t \)) → use read arcs.

- Any configuration (process) of the unfolding maps (by removing the read arcs) to a pre-process (i.e. a prefix of a process) of the NTA.

- Use only minimal sets \(L \) to increase concurrency.
Conclusion

- concurrent operational semantics for NTA
- parameterized local stability condition
- solve constraints on the dates of the events
- study of the form of the constraints
 → finite complete prefix of the unfolding
- if there is no urgency, the unfolding is simply the superimposition of the processes